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Abstract
In this paper, we studied two electrons confined in a quantum dot with the Woods–Saxon
potential by using the method of numerical diagonalization of the Hamiltonian matrix within
the effective-mass approximation. The great advantage of our methodology is that it enables
confinement regimes by varying two parameters in the model potential. A ground-state
behavior (singlet → triplet state transitions) as a function of the strength of a magnetic field has
been investigated. We found that the confinement barrier size and the barrier inclination of a
Woods–Saxon potential are important for the singlet–triplet oscillation of a two-electron
quantum dot. Based on the computed energies and wavefunctions, the linear and nonlinear
optical absorption coefficients have been examined between the 1S state (L = 0) and the 1P
state (L = 1). The results are presented as a function of the incident photon energy for the
different values of the barrier size and height. It is found that the optical properties of the
two-electron system in a quantum dot are strongly affected by the barrier height and size.

1. Introduction

The progress in semiconductor technology has opened up a
rich field of studies focused on the fundamental electron–
electron interactions, quantum effects and optical properties
in quantum dots (QDs) [1, 2]. The experimental study of
semiconductor QDs is expanding rapidly [3–6] and electron–
electron interaction and correlation effects are shown to
be of great importance [7–9] in such systems. In the
meantime, a large number of theoretical investigations [10–13]
of electronic structures and related magnetic and optical
properties in QDs have been performed to explain the
experimental observations. Based on a numerical solution of
the Coulomb interaction between electrons, a complex ground-
state behavior (singlet → triplet state transitions) as a function
of a magnetic field has been predicted [8, 14]. Remarkably,
these ground-state transitions for N = 2 have been observed
experimentally [5].

From the point of view of quantum confinement,
engineering the electronic structure of materials by means
of shape and size control offers the possibility of tailoring
the energy spectrum to produce desirable optical transitions.
These features are useful for the development of optoelectronic
devices with tunable emission (or transmission) properties and
ultra-narrow spectral linewidths. Hence, optical properties
of QDs have been investigated both experimentally and

theoretically by many authors [15–19]. In the optical transition
of quantum confined few-electron systems, the analysis of the
two-electron states is inevitable because the confinement of
quasiparticles in such a structure leads to the enhancement
of the oscillator strength for electron–electron excitations.
Meanwhile, the dependence of the optical transition energy on
the dot size allows the tunability of the resonance frequency.
Very recently, Sahin investigated the linear optical properties
of a spherical QD containing one and two electrons with a
hydrogenic impurity [20]. However, to our knowledge, there
are only a few studies on the nonlinear optical property of few-
electron QDs [21, 22].

The influence of spatial confinement on the properties
of a QD system is one of the most interesting properties to
be investigated in the study of confined systems. However,
most of the previous studies are concerned with two-electron
systems in a parabolic potential QD which possesses infinite
depth and range or a box potential QD which is not completely
solved because of the boxing effects. It is inappropriate
for a description of the experimentally measured charging
of the QD by the finite number of excess electrons [23].
Some experimental results suggest that the real confining
potential is nonparabolic and possesses a well-like shape. More
recently, Boyacioglu and co-workers investigated the problem
of two electrons in a three-dimensional QD with Gaussian
confinement by a variational method [24].
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The behavior of electrons is very important in understand-
ing few-electron QDs. Thus, a good description of the motions
of these electrons is very useful in studying few-electron QDs.
Since QDs are created mainly through producing a lateral
confinement restricting the motion of the electrons, which
are initially confined in a very narrow quantum well, they
usually have the shape of flat discs, with transverse dimensions
considerably exceeding their thickness. The energy of single-
electron excitations across the disc exceeds other characteristic
energies in the system, and the confined electrons can be
considered as two-dimensional. The lateral potential of a
QD differs significantly from the Coulomb potential binding
electrons in an atom—the latter has a peculiarity in the center.
Depending on the method used to create the dot, the lateral
potential can be approximated by a model potential. The
potential of an etched dot with a considerable radius is fairly
close to a rectangular well with rounded edges. When a dot is
small (i.e. when its radius is comparable to the characteristic
length of the variation of the lateral potential near the edge),
a good approximation offers simple smooth potentials, such as
a Wood–Saxon potential VWS(R0, r) = V0/(1 + exp[(R0 −
r)/γ ]) or a Gaussian well V (R0, r) = −V0 exp(−r 2/R2

0).
Woods and Saxon introduced a potential to study elastic

scattering of 20 MeV protons by a heavy nuclei half a
century ago [25]. The Woods–Saxon potential is a reasonable
potential for nuclear shell models and hence attracts a lot
of attention in nuclear physics and it is used to represent
the distribution of nuclear densities [26]. The Woods–Saxon
potential possesses finite depth and range. The Woods–Saxon
potential is a continuous function that has two adjustable
parameters. These parameters allow one to treat different
systems and to simulate smooth model potentials and infinite
or finite constant barriers with the same efficiency. Obviously,
the Woods–Saxon potential becomes a rectangular potential
well when γ → 0. Recently, the Woods–Saxon potential has
also been used in the study of an impurity in the center of a
QD by variational methods [27]. Although the Woods–Saxon
potential is not a new model potential, its use to simulate the
confinement barrier appears to be novel. Hence, in the present
work, we will focus on studying the transition of the ground
state, and the linear and nonlinear optical properties of the two-
electron systems in a two-dimensional QD with Woods–Saxon
confinement. By using the matrix diagonalization method, we
will find the energy spectrum of the low-lying states, and the
linear and nonlinear third-order optical absorption coefficients
of the two-electron QD. Furthermore, we will investigate the
quantum size and the incident optical intensity for the optical
properties of a two-electron QD.

2. Singlet–triplet oscillation

The Woods–Saxon potential is given by

VWS(R0, r) = V0

1 + exp[(R0 − r)/γ ] , (1)

where R0 denotes the confinement barrier position, i.e. the av-
erage radius of the QD, V0 is the height of the potential barrier,
and V0 > 0, and γ control the confinement barrier slope.

These parameters guarantee the flexibility of the present
methodology treating the two-electron systems in QDs. We
emphasize that the barrier inclination increases as the parame-
ter decreases.

The system we study is two interacting electrons moving
in the (x, y) plane, confined by a Woods–Saxon potential and
subject to a perpendicular magnetic field B which is assumed
to be along the z direction. Therefore, the Hamiltonian of the
system can be given by

H =
∑

i=1,2

[
1

2me

(
�pi − e

c
�A
)2

+ VWS(R0, ri )

]

+ e2

εr12
− g∗μB BSz, (2)

where �ri ( �pi ) is the position vector (the momentum vector) of
each electron originating from the center of the dot, me is the
effective mass of an electron, r12 = |�r1 − �r2| is the electron–
electron separation, e is the electronic charge of an electron
and ε = 4πε0εr is the effective dielectric constant of the QD.
g∗ is the effective Landé factor, μB is the Bohr magneton and
Sz is the z component of the total spin. With symmetric gauge
for the magnetic field �A = B(−y, x, 0)/2, the Hamiltonian is
then

H =
∑

i=1,2

[
p2

i

2me
+ 1

2
meω

2
cr 2

i + VWS(R0, ri )

]

− 1

2
ωc Lz + e2

εr12
− g∗μB BSz, (3)

where ωc = eB/cme is the cyclotron frequency and Lz is the
total orbital angular momentum along the z direction.

The Hamiltonian has cylindrical symmetry which implies
that the total orbital angular momentum, L, is a conserved
quantity, i.e. a good quantum number. The total spin of
two electrons, S, also is a conserved quantity. Hence, the
eigenstates of the two electrons in two-dimensional cylindrical
symmetry QDs can be classified according to the total orbital
angular momentum and the total spin momentum of the
electrons, i.e. after solving our Hamiltonian, a series of
energy levels which we indicate by the quantum numbers
(L, S). Hence, the states of two electrons will be denoted
by 2S+1L. To obtain the eigenfunction and the eigenenergy
associated with the two electrons in a two-dimensional Woods–
Saxon confining potential QD, we diagonalized H . The
exact diagonalization method consists in spanning the total
Hamiltonian for a given basis and extracting the lowest
eigenvalues (energies) of the matrix generated. The better
the basis describes the Hamiltonian, the faster will be the
convergence. The most common basis chosen is the one that
describes the Hamiltonian at zero order.

As we know, the two electrons obey Fermi–Dirac statistics
which means that the electronic part of the total wavefunction
must be antisymmetric, i.e. when S = 0 the spatial part
of the electronic wavefunction must be symmetric and when
S = 1 the spatial part of the electronic wavefunction must be
antisymmetric. To obtain the eigenenergies and eigenstates,
H is diagonalized in the model space spanned by translational
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Figure 1. The energies of the low-lying states with L � 3 of a
two-electron QD confined by the Woods–Saxon potential versus
external magnetic field. The solid and dashed lines represent,
respectively, the spin-singlet and spin-triplet states. The levels are
labeled by quantum numbers 2S+1L . Parameters are taken
appropriately for GaAs, V0 = 30.0 meV, R0 = 10.0 nm and γ = 3.0.

invariant harmonic product states:

�L S
[K ] =

∑

[K ]
Ã{[ϕω

n1�1
(�r1)ϕ

ω
n2�2

(�r2)]LχS}, (4)

where ϕω
n� is a two-dimensional harmonic oscillator wave-

function with a frequency ω (ω is an adjustable parameter)
and an energy (2n + |�| + 1)h̄ω, and [K ] denotes the set
quantum numbers (n1, �1, n2, �2) in brief, χS = [η(1)η(2)]S.
In a practice calculation, ω serves as a variational parameter
to minimize the eigenvalues, while Ã is a antisymmetrizer.
The calculation of matrix elements is realized by using two-
dimensional Talmi–Moshinsky coefficients [28].

Since the whole set of eigenstates of the harmonic product
basis forms a complete basis in the Hilbert space, the procedure
of increasing the number of linearly independent eigenstates
is converging to the exact result. The limits are set only by
the capacity of the computer to diagonalize N × N Hermitian
matrices. On the other hand, we are interested only in the
low-lying states and, in the qualitative aspects, the model
space adopted is neither very large—to facilitate numerical
calculation—nor very small—to ensure qualitative accuracy.
This is achieved by extending the dimension of the model
space step by step; in each step the new results are compared
with previous results from a smaller space, until satisfactory
convergence is achieved. In this paper, the dimension of the
model space is constrained by 0 � N = 2(n1 + n2) + |�1| +
|�2| � 30. If N is increased by 2, the ratio of the difference in
energy is less than 0.1%. After the diagonalization we obtain
the eigenvalues and eigenstates. Evidently, the eigenvalues
depend on the adjustable parameter ω.

Our numerical computation is carried out for GaAs QDs
with the material parameters shown in the following: εr = 12.4
and me = 0.067m0, where m0 is the single-electron bare mass
and V0 = 30.0 meV. In what follows the energy unit is meV

Figure 2. The same as figure 1, but for R0 = 20.0 nm.

and the length unit is nm. For simplicity, in this section, we
restrict our study to L � 3 with the spin-singlet and the spin-
triplet states of two electrons, which are denoted by 1S, 3S, 1P,
3P, 1D, 3D, 1F and 3F.

To see intuitively the feature of the ground state of a
two-electron system confined in a QD with the Woods–Saxon
confining potential, we set R0 = 10.0 nm and γ = 3.0, and
plotted in figure 1 the energy spectrum of the low-lying states
as a function of the external magnetic field B . In figure 1
we note the singlet–triplet oscillation of the ground state with
the increase of the external magnetic field. As we know,
it is the competition between the single particle energy and
the interacting energy that finally determines the total energy.
The slope of the rising curve depends on L. A smaller L
would lead to a larger slope because the negative term ωc Lz/2
is weaker. Therefore, when the magnetic field B increases,
the curve with a small L crosses the curve with a larger L
because the former is rising faster. Obviously, the crossing
would lead to a transition of L and S of the ground state from
one to another. In figure 1 we also note the singlet–triplet
oscillation of the ground state. However, there occurs only one
singlet–triplet transition of the ground state (i.e. from the 1S
state to the 3P state) with increasing magnetic field strength.
For a weak magnetic field, the ground state of the system is
the spin-singlet S = 0. The ground-state spin is flipped to
S = 1 at the crossing point of B � 13.4 T as the strength
of the magnetic field increases. In a two-electron parabolic
QD, there are also singlet–triplet transitions of the ground
state with increasing magnetic field strength. The two-electron
parabolic QD has been studied in great detail by Merkt et al
[29].

Obviously, the crossing points of the singlet–triplet
oscillation depend on R0 and γ . In order to show better the
confinement barrier size effect, we take R0 = 20.0 nm and
γ = 3.0 and plotted in figure 2 the energy spectrum of the
low-lying states of a two-electron system confined in a QD
with the Woods–Saxon confining potential as a function of the
external magnetic field B . We see the familiar singlet–triplet
oscillations of the ground state and the crossing point shifts to
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Figure 3. The same as figure 2, but for γ = 2.0.

the lower magnetic field strength, e.g. the first transition shifts
to B � 6.2 T. There occurs the second singlet–triplet transition
of the ground state at B � 19.9 T. This result can be interpreted
as follows. When R0 increases, the geometric confinement of
electrons becomes weak. The lowest potential energy of QDs
shifts to the larger radius and the energy of the higher orbit
decreases. Hence, the singlet–triplet transition points shift to
the lower magnetic fields. On the other hand, we find that
the energies decrease obviously with increasing confinement
barrier size. This is because, when the confinement barrier
size increases, the confinement in QDs will decrease and the
energies of the low-lying states will decrease.

On the other hand, in order to investigate the influence
of the barrier inclination of a Woods–Saxon potential, i.e. a
parameter γ , we take γ = 2.0 and plotted in figure 3 the energy
spectrum of the low-lying states of a two-electron system
confined in a QD with the Woods–Saxon confining potential
as a function of the external magnetic field B . We find that the
energy spectrum in figure 3 is qualitatively the same as that in
figure 2. The difference is that the singlet–triplet transitions
slightly shift to the lower magnetic field strengths, e.g. the first
transition shifts to B � 5.7 T and the second transition shifts to
B � 18.0 T. This is because the confinement energy decreases
with decreasing γ . Hence, the confinement barrier size is more
important than the barrier inclination for the singlet–triplet
transition of the ground state.

3. Linear and nonlinear optics absorption
coefficients

The optical absorption calculation is based on Fermi’s golden
rule, for which the total optical absorption coefficient is given
by [30]

α(ω, I ) = α(1)(ω) + α(3)(ω, I ), (5)

where

α(1)(ω) = 4πβFSσs

nre2
hν|Mi f |2δ(E f − Ei − hν), (6)

and

α(3)(ν, I ) = −32π2β2
FSσs I

n2
r e4h̄� f f

hν|Mi f |4δ2(E f i − hν)

×
{

1 − |M f f − Mii |2
4|M f i |2

× [(hν − E f i )
2 − (h̄� f i)

2 + 2E f i (E f i − hν)]
E2

f i + (h̄� f i)2

}
, (7)

are the linear and the third-order nonlinear optical absorption
coefficients, respectively. nr is the refractive index of the
semiconductor and it is taken as 3.2, e is the electronic charge
of an electron and σs is the electron density in the QD. βFS =
e2/(4πε0h̄c) is the fine structure constant. hν denotes the
photon energy. E f and Ei are the final- and initial-state energy
eigenvalues, respectively. M f i = 2q〈 f | �R|i〉 is the electric
dipole moment of the transition from the i th state to the f th
state in the QD, where q is the electronic charge. Unlike
a parabolic QD, the variables of a QD with Woods–Saxon
potential is not independent. Hence, the electric dipole moment
of the transition M f i is not independent of the relative motion.
This is not satisfied with the Kohn theorem [31]. On the
other hand, the dipole operator is independent of the electron
spin. The dipole-allowed optical transitions are always from
the same spin states, but the angular momenta must differ by
unity [32] Hence, we restrict our study to the transition of the
1S state (L = 0) to the 1P state (L = 1).

The δ function in equations (6) and (7) is replaced by a
narrow Lorentzian by means of

δ(E f − Ei − hν) = h̄� f i

π{[hν − (E f − Ei )]2 + (h̄� f i )2} . (8)

Here � is the phenomenological operator. The diagonal matrix
element � f f of operator �, which is called the relaxation rate
of the f th state, is the inverse of the relaxation time T f for
the state | f 〉, namely � f f = 1/T f f . Here T f f is taken as
1 ps, whereas the nondiagonal matrix element � f i ( f �= i) is
called the relaxation rate of the f th state and the kth state and
1/T f i = 0.14 ps.

In order to study the optical properties of a two-electron
QD, a numerical calculation has been performed for the linear
absorption coefficient α(1) as a function of the incident photon
energy hν in the range from 0 to 80 meV. In figure 4 the
barrier height V0 is set to be 112.23 meV, the barrier inclination
γ is set to be 3.0 and the dot radii R0 are set to be 10.0,
15.0 and 20.0 nm, respectively. From this figure we can find
that the size effect of the QD is obvious. It is readily seen
that the linear absorption coefficient of small-radius QDs is
stronger than that of large-radius QDs. We also find that the
smaller the dot radius R0 is, the sharper the absorption peak
will be and the bigger will be the absorption peak intensity.
The physical origin of these results is that the linear absorption
spectrum depends on the electron density in QDs, i.e. depends
on the QD radius. Thus, this reason leads to the linear
absorption coefficient increase. On the other hand, we find
that the linear absorption peak values appear at hν = 16.0,
22.6 and 30.8 meV, respectively. Hence, as the dot radius
decreases, the linear absorption peak position shifts to the high
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Figure 4. The linear absorption coefficient of a two-electron QD
confined by the Woods–Saxon potential as a function of the incident
photon energy hν for three different values of the dot radius R0.
Parameters are taken appropriate for GaAs: V0 = 112.23 meV and
γ = 3.0.

photon energies, which shows a dot-radius-induced blueshift
of the resonance in QDs. The physical origin is that, with
decreasing dot radius, the Coulomb interaction energy in a QD
is increased, leading to the increase of the energy difference
between the 1S and 1P states. The linear absorption spectrum
peak values are decreasing with increasing dot radius, because
the energy levels come close to each other.

Figure 5 shows the linear absorption spectrum of the two
electrons in a Woods–Saxon QD with R0 = 10 nm as a
function of the incident photon energy hν in the range from 0 to
100 meV for three different barrier heights, i.e. V0 = 112.23,
224.46 and 336.69 meV, respectively, corresponding to three
Al concentrations [33]. The confinement effect of the barrier
height (i.e. Al concentration) seems clear. It can been seen that
the linear absorption peak positions shift to higher energies
(blueshift) with increasing V0. This is because the energy
difference between the 1S and 1P states will increase with
increasing V0. On the other hand, figure 5 also shows that
the linear absorption peak intensity decreases with increasing
V0, i.e. the smaller the barrier height is, the sharper the linear
absorption peak will be and the bigger will be the absorption
peak intensity. This is because the electron dipolar transition
matrix element decreases with increasing V0.

In figure 6, in order to see clearly the influence of
nonlinear optical absorption, we set V0 = 112.23 meV,
R0 = 10.0 nm and γ = 3.0 and plot the linear and third-
order nonlinear absorption coefficients (α(1) and α(3)), as well
as the total absorption coefficient (α = α(1) + α(3)), as a
function of the incident photon energy hν for two different
incident optical intensities 2.5 × 107 W m−2 (solid line) and
7.5 × 107 W m−2 (dashed line), respectively. It is readily seen
that the large α(1), which comes from the linear susceptibility
term, is positive, whereas α(3), which is generated by the
nonlinear third-order susceptibility term, is negative. So the
coefficient α is significantly reduced by the α(3) contribution.
Hence, since α(3) can induce nonlinear absorption, α(3) should
be considered when the incident optical intensity I is strong.

Figure 5. The linear optical absorption coefficient of a two-electron
QD confined by the Woods–Saxon potential as a function of the
incident photon energy hν for three different values of the
confinement barrier heights V0. Parameters are taken appropriate for
GaAs: R0 = 10.0 nm and γ = 3.0.

Figure 6. The linear, third-order nonlinear and total absorption
coefficients of a two-electron QD confined by the Woods–Saxon
potential as a function of the incident photon energy hν for two
different values of the incident optical intensity I . Parameters are
taken the same as in figure 4.

Further, in order to show better the influence of the
incident optical intensity I for the total absorption coefficient
α, in figure 7, we set V0 = 112.23 meV and R0 = 10.0 nm and
plot α as a function of the incident photon energy hν for eight
different values of I = 0, 1.5 × 107 W m−2, 2.5 × 107 W m−2,
3.5 × 107 W m−2, 4.5 × 107 W m−2, 5.5 × 107 W m−2, 6.5 ×
107 W m−2 and 7.5 ×107 W m−2, respectively. The maximum
absorption coefficient corresponding to the threshold photon
energy decreases with increasing I . The absorption will
be strongly bleached at sufficiently high incident optical
intensities. Figure 7 shows that the strong absorption saturation
begins to occur at around I = 3.5 × 107 W m−2. When the
incident optical intensity exceeds this value, the absorption
peak will be significantly split into two peaks, which will be
strongly bleached as a consequence of the absorption.
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Figure 7. The total absorption coefficient of a two-electron QD
confined by the Woods–Saxon potential as a function of the incident
photon energy hν for eight different values of the incident optical
intensity I . Parameters are taken the same as in figure 4.

4. Summary

In conclusion, we have proposed a novel procedure to study
the confinement effects of a two-electron system, i.e. the use
of the Woods–Saxon confining potential function to simulate
the spatial confinement of QDs. The great advantage of our
methodology is that it enables confinement regimes by varying
two parameters in the model potential. We have calculated
the energy levels of the four spin-singlet and spin-triplet states
as functions of the magnetic field by exact diagonalization
within the framework of effective-mass theory. A ground-
state behavior (singlet → triplet state transitions) as a function
of the strength of a magnetic field has been found. We
found that the confinement barrier position and the barrier
inclination of a Woods–Saxon potential are important for the
ground-state transition and the feature of low-lying states for
a two-dimensional two-electron quantum dot. Based on the
computed energies and wavefunctions, the linear and nonlinear
optical absorption coefficients have been examined between
the 1S state (L = 0) and the 1P state (L = 1). The results are
presented as a function of the incident photon energy for the
different values of the barrier height and size. It is found that
the optical properties of the two-electron system in a QD are
strongly affected by the barrier height and size. The present
results are useful in understanding the electronic and optical
properties of a two-electron QD.
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